Appendix 8.5: Outline Drainage Strategy

Pell Frischmann

Dunside Wind Farm

Outline Drainage Strategy

EIA Report Appendix 8.5

Introduction

Pell Frischmann have been commissioned by LUC (referred to as the "Client" throughout the document) to provide an outline Drainage Strategy for the proposed Dunside Wind Farm (referred to as the "Proposed Development" throughout the document), on behalf of EDF Energy Renewables Limited.

This report provides an outline surface water management strategy to mitigate any impact from surface water runoff attributed to the Proposed Development. The strategy is developed in accordance with sustainable drainage principles and allows the Site to mitigate flood risk during design storm events, whilst ensuring no increase of flood risk to offsite receptors and avoiding deterioration of the water environment.

The drainage strategy presented in this document has been developed to demonstrate measures that could be used across the Site to protect the existing hydrological regime. Examples of mitigation measures are provided throughout the report with detailed proposals for measures to be documented prior to construction. Measures will provide the same or greater protection for the water environment. The measures are designed to be proportionate to the risk and, where greater risk is highlighted at specific locations prior to construction, specific measures would be agreed for those locations.

The drainage strategy has been prepared in accordance with the advice and requirements prescribed in current best practice documents relating to management of flood risk in development, published by the Construction Industry Research and Information Association (CIRIA)¹, the British Standards Institution (BSI) BS8533² and Scottish Environment Protection Agency (SEPA) National Standing Advice on Development and Flood Risk³.

The Site is within the jurisdiction of Scottish Borders Council (SBC).

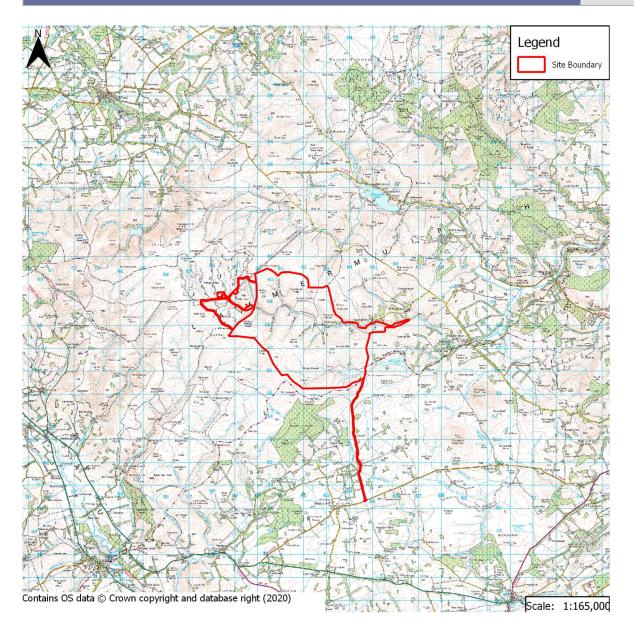
To complete the Drainage Strategy, the following key stages of work have been undertaken:

- Collation of desk-based information and a review of publicly available information, including local data, policy and guidance.
- A desktop review of other data that has been made available such as topographical surveys/elevation information and Proposed Development layout options.
- Estimation of the required surface water attenuation storage and provision of outline Sustainable Urban Drainage Systems (SuDS) features arrangement.

Background and Site Context

The Proposed Development is located to the north of Westruther in the Scottish Borders Council administrative area. The site is located adjacent to the operational Fallago Rig Wind Farm as shown on Figure 1.

² Information on BSI 8533 can be found here:


Info

¹ CIRIA Drainage Guidance can be found here:

https://www.susdrain.org/resources/ciria-guidance.html

https://knowledge.bsigroup.com/products/assessing-and-managing-flood-risk-in-development-code-of-practice/standard ³ SEPA National Standing Advice:

https://www.sepa.org.uk/media/535237/sepa-standing-advice-for-planning-authorities-and-developers-lups-gu8-v11-web.pdf

Figure 1 Site Location Plan

Proposed Development

The Proposed Development comprises of up to 15 wind turbines, an expansion to an existing substation compound, approximately 14.6 km of proposed wind farm tracks, 1.1 km of light vehicle tracks and other ancillary infrastructure, within a total site area of approximately 2006 ha.

Local Watercourses

The main watercourse within the proposed Site boundary is the Dye Water, which flows in an easterly direction through the centre of the Site.

The Dye Water valley is surrounded by adjacent summits which comprise a series of rounded hilltops aligned roughly from west to east, producing pronounced undulating topography along each side of the valley. Numerous small named and unnamed watercourses (e.g., Burn betwixt the Laws, Kersons Cleugh, Green Cleugh, Foul Cleugh, Wood Cleugh and Hall Cleugh) flow from these hills towards the Dye Water, resulting in several defined hill spurs on either side of the valley. Figure 2 shows the extent of existing watercourses crossed by the infrastructure and Figure 3 shows the location of the existing and proposed crossings. A full plan of the site, watercourse crossings and catchments is shown in Appendix A

Pell Frischmann

Kaya Consulting (KC) have undertaken a hydrological analysis for each individual catchment at the watercourse crossing location, determining the design flows for 2-, 10-, 30-, 50-, 100- and 200-year return periods.

4 new watercourse crossings will be required over the identified watercourses as a result of the Proposed Development. The watercourse crossing specification and capacity check is provided in Appendix B.

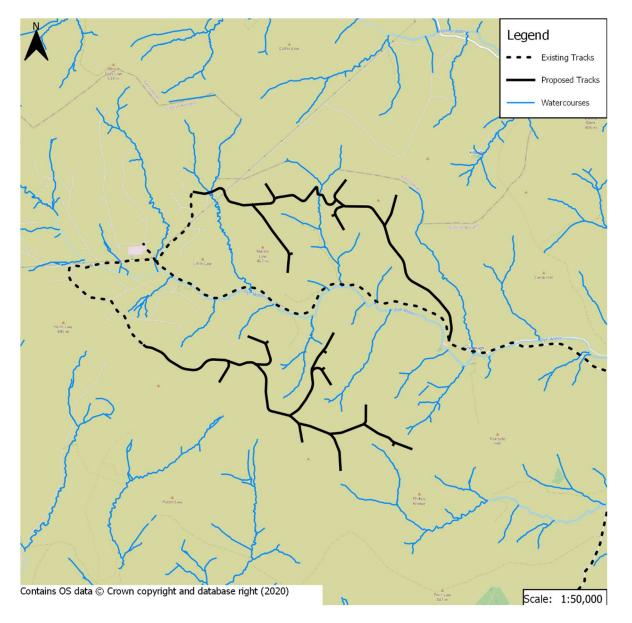


Figure 2 Existing Watercourses

Topography

The topography varies over the site, with a central valley from east to west associated with the Dye Water. The Proposed Development is generally split across three main topographically distinct areas (north-west, north-east and south), comprising separate high points or ridges. There are a number of steep slopes within the site, generally located in the vicinity of watercourses.

Trackside Drainage

The proposed trackside drainage layout for the Proposed Development is shown in Drawings SK01-SK06 (Appendix C).

The ditches will be sized by the contractor at the detailed design stage to accommodate surface runoff from the track for the 1 in 30-year design storm event.

All permanent drainage should be installed concurrently with all adjacent infrastructure.

All drainage channels should be sufficiently wide as is practicable to allow wildlife to safely enter and exit the channel. The channel banks shall be at a minimum slope of 1 in 3.

Permanent check dams should be specified at the detailed design stage. They should be spaced at regular intervals within the drainage ditches. Check dams are required to reduce the velocity and slow down sediment transportation while also preventing channel scour.

Check dams are proposed to be constructed of clean aggregate graded 50mm-300mm and embedded into the side walls and invert of the excavation by at least 100mm. The number and location of check dams will be dependent on the slope gradient with a minimum spacing of 1 check dam per 75m length of ditch.

The spacing of relief drains crossing the access tracks should be determined at the detailed design stage. The spacing of relief drains should not exceed 200m as per best practice.

Watercourse Crossings

There are 4 new/upgraded watercourse crossings required for the Proposed Development (2 existing crossings which will require upgrading and 2 proposed new crossings) There are an additional 19 existing crossings where no upgrading is required).

Design Criteria

The watercourse crossing outline design is based on the following guidance:

- SEPA River Crossings Engineering in the water environment: good practice guide.⁴
- CIRIA The SuDS Manual C753.⁵

In addition, SBC's response to the EIA Scoping submission requested that:

- 1. "The formation of any newly formed hard surfaces such as access roads should be attenuated to at least existing Greenfield runoff rates so that there is no increased effect on downstream receptors. Likewise, any discharges from SUDS and other drainage should be kept to existing Greenfield runoff rates.
- 2. If there are to be any culverts, watercourse crossings or alterations to crossings, these must not reduce the flow conveyance of the watercourse.
- 3. Details of the silt traps and any other functions that the applicant proposes to minimise the amount of sediment entering the watercourse should be submitted."

SEPA has recommended that all small-scale watercourse crossings should be designed as oversized bottomless arched culverts or traditional style bridges within their scoping response.

⁴ SEPA River Crossings Engineering in the Water Environment: Good Practice Guide can be found here: <u>https://www.sepa.org.uk/media/151036/wat-sg-25.pdf</u>

⁵ CIRIA The SuDS Manual C753 can be found here:

https://www.ciria.org/ItemDetail?iProductCode=C753&

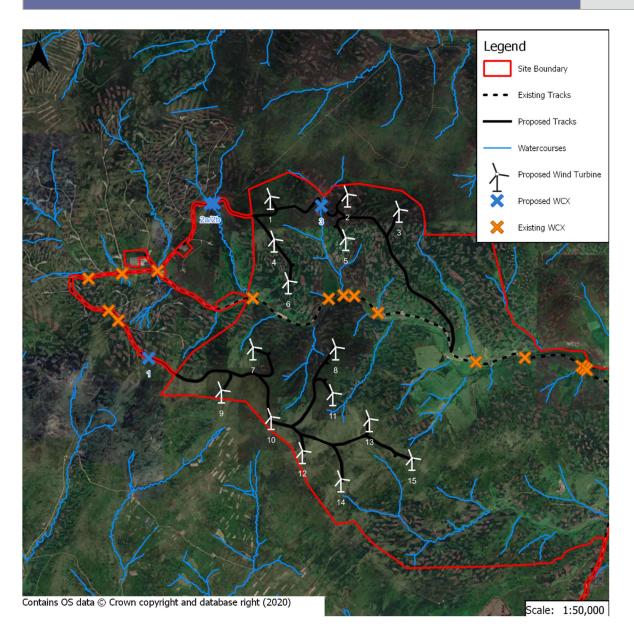
Methodology

The location of the watercourse crossings is based on KC's assessment.

The ground elevations within the Site boundary are informed from publicly available LiDAR data which was used for approximation of the watercourses cross-section and slope.

The method for sizing the watercourse crossings included:

- 1. Estimating the length of the hydraulic structure, based on satellite imagery, LiDAR data with 50cm resolution, basic dimensions of watercourse collected on site, hydrological characteristics and the extents of the proposed infrastructure.
- 2. Estimating the slope of the structure, based on upstream and downstream invert levels, informed from LiDAR data.
- 3. Sizing the structure based on the above parameters and the requirement to convey the 1 in 200-year return period flows, with capacity verified with HY-8 Culvert Hydraulic Analysis Programme for all specified bottomless arch culverts.


The method provides reasonable estimation. The exact slope, however, will require to be assessed on site by the contractor.

Watercourse Crossing Outline Design

The full results, including the HY-8 capacity check output, for all watercourse crossings are provided in Appendix B. The following is a summary of the watercourse crossing outline design:

- New Watercourse Crossing 1 is located towards the south-western edge of the Site Boundary and is proposed to be a bottomless arch culvert with span of 1.829m and rise of 0.546m
- Upgraded Watercourse Crossing 2 is located just upstream of the Burn betwixt the Laws and consists of two structures. Crossing 2a is a bottomless arch culvert on the Middle Black Burn and Watercourse Crossing 2b is a bottomless arch culvert on Black Burn. Both culverts are with a span of 2.438m and rise of 0.889m.
- New Watercourse Crossing 3 is located on the unnamed drain along Kersons Cleugh and is proposed to be a bottomless arch culvert with span of 2.438m and rise of 1.016m.

Figure 3 shows a plan of the proposed watercourse crossing locations.

Figure 3 Watercourse Crossing Locations

The proposed bottomless arch culverts will have to incorporate concrete structural protection to account for the abnormal loadings and mitigate against structural failure. The concrete surround specification will be determined at the detailed design stage of the project.

The proposed watercourse crossings should be laid in natural ground or into the bed of the watercourse where applicable. All culvert sizes have been designed to maintain self-cleansing velocity during the design event (1 in 200-year return period).

Flow Attenuation

Current best practice relating to sustainable surface water management is outlined in the SuDS Manual (CIRIA Report C753) which provides details on the use of SuDS for managing surface water runoff:

• Prevention – the use of good site design and housekeeping measures on individual sites to prevent runoff and pollution (e.g. minimise areas of hard standing).

- Source Control control of runoff at or very near its source (such as the use of rainwater harvesting, permeable paving or green roofs).
- Site Control management of water from several sub-catchments (including routing water from roofs and car parks to one or several soakaways or attenuation ponds for the whole site).
- Regional Control management of runoff from several sites, typically in a retention pond or wetland.

It is generally accepted that implementation of SuDS, as opposed to conventional drainage systems, provides several benefits by:

- Reducing peak flows to watercourses or sewers and potentially reducing the risk of flooding downstream.
 Reducing the volumes and frequency of water flowing directly to watercourses or sewers by removing pollutants from diffuse pollutant sources.
- Improving water quality over conventional surface water sewers by removing pollutants from diffuse pollutant sources.
- Reducing potable water demand through rainwater harvesting.
- Improving amenity through the provision of public open spaces and providing biodiversity and wildlife habitat enhancements.
- Replicating natural drainage patterns, including the recharge of groundwater so that the baseflows are maintained.

The Surface Water Drainage Strategy for the Proposed Development will comprise the management of surface water runoff from the hardstanding and roof areas.

In accordance with CIRIA Report C753, the hierarchy for favoured disposal of surface water runoff from development sites is as follows:

- 1. Water reuse, where a demand is identified.
- 2. Infiltration to Ground, where ground conditions permit.
- 3. Discharge to Surface Waters.
- 4. Discharge to Sewer.

Proposed Surface Drainage

The additional permanent impermeable areas within the Proposed Development consist of the substation platform extension and the turbine hardstanding areas. They will consist of compacted gravel. The drainage design is based on a conservative assumption that they are 80% impermeable.

Greenfield runoff rates have been estimated through application of methodology outlined in IH124 as set out within the Interim Code of Practice for SuDS (ICPSuDS). The IH124 method can be used to estimate Greenfield runoff rates for a range of Annual Exceedance Probability (AEP) events, or return periods by applying regional growth curve factors to the mean annual peak runoff (i.e. QBAR). The UK hydrological region for the Site is Region 2 therefore the appropriate growth curve factors for this region have been incorporated into the analysis undertaken in the MicroDrainage software suite.

The hydrological characteristics for the catchment have been incorporated into the runoff modelling and results are presented below in Table 1 for a range of AEP storm events.

- Site Area: Substation Platform 1.3ha; Turbine hardstanding 0.24ha
- Average Annual Rainfall (SAAR): 953
- Soil Index: 0.50
- UK Hydrological Region: No.2
- Urban Extent: 0

Table 1 Estimation of Greenfield (pre-development) Rate of Runoff

AEP (%)	Return Period	Greenfield Runoff Rate (I/s/ha)
50	2	7.2
	QBAR	<u>7.9</u>
3.3	30	15
1	100	20.8
0.5	200	23.6
0.1	1000	30.5

The QBAR 'Unit Greenfield Runoff Rate' for the Site, and thus the limiting post development peak runoff rate for all storm events up to and including the design 0.5% AEP plus climate change, has been estimated to be 7.9l/s/ha.

Therefore, the limiting Greenfield runoff rate, assuming 80% impermeability is **8.2I/s** for the substation platform and **1.5I/s** for a wind turbine hardstanding.

Proposed Attenuation and SuDS Features

Based on the attenuation calculations, undertaken in MicroDrainage (Appendix D), a volume of 903m³ need to be attenuated for the substation platform extension for the 0.5% AEP + uplift for climate change. It is proposed that this is attenuated via a SuDS attenuation pond with the following parameters:

- 1.35m total depth
- 300mm freeboard allowance
- 1 in 3 side slope
- Outflow controlled via a Hydro-brake

It is recommended that an emergency spillway is designed at the detailed design stage for the proposed SuDS pond to accommodate for a storm event exceeding 0.5% AEP + climate change.

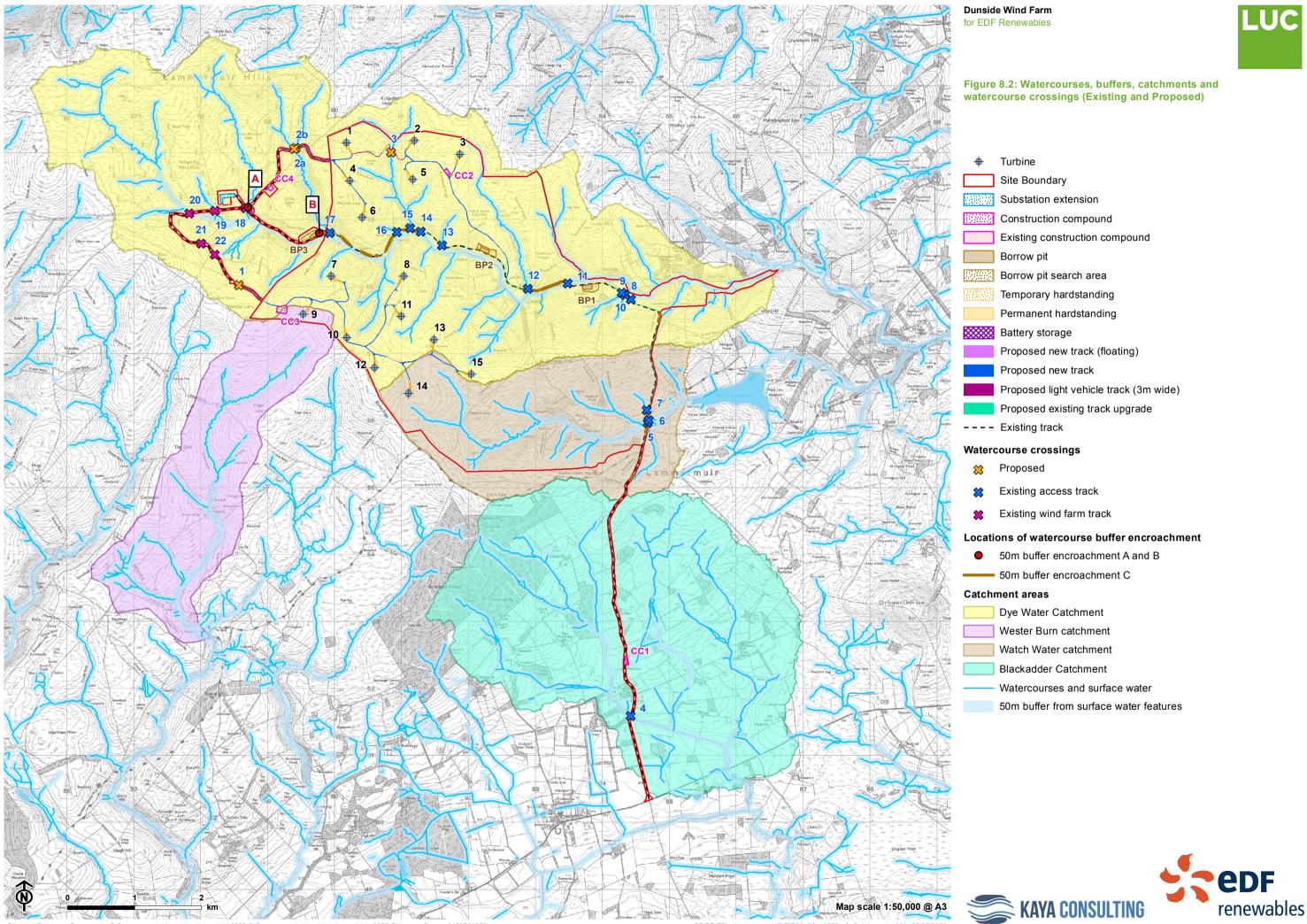
Due to the site topography and the location of the proposed substation platform, the SuDS pond outfall will be to the south or southwest of the site. The location of outfall pipe will be confirmed following consent through the detailed drainage management strategy as per the CEMP.

For the turbine hardstanding areas, it is proposed that interception drains are placed at the downslope of the wind turbine platforms, intercepting and attenuating runoff. Discharge of surface water would be achieved by water spilling over a designed weir section along the crest of the drain with appropriate erosion protection. This attenuation method is considered most suitable for the rural upland area of the Site. The required attenuation volume per turbine hardstanding area for the 0.5% AEP + uplift for climate change is 165.8m³ and was calculated through Innovyze MicroDrainage (shown in Appendix C).

The latest guidance on climate change impacts on peak rainfall intensities has been published by SEPA, with an updated approach based on regional estimates across river management catchments. The site falls within the Tweed Catchment, which suggests for the 2080s epoch the climate change allowance is 35%.

Summary & Recommendations

Summary of outline drainage strategy for the site:


- The Site contains 14.6km of proposed access tracks. The proposed access tracks will be served by a network of surface water drainage ditches adjacent to the tracks. The trackside drainage will utilise relief drains crossing the access track longitudinally to ensure the drainage ditches do not surcharge.
- The proposed drains should utilise silt traps/catch pits at the inlet of all cross drains to prevent the pipes becoming blocked.
- The proposed trackside drainage should be designed so that it allows wildlife to cross safely.
- Erosion protection should be utilised at all inlets and outlets
- 4 proposed watercourse crossings have been sized and specified on the basis of hydrological assessment undertaken by KC, LiDAR data and the proposed infrastructure layout (two upgraded crossings and two new crossings).
- All of the proposed watercourse crossing are bottomless arch culverts.
- 2 of the proposed watercourse crossings are replacing existing conventional closed pipe culverts on the Middle Black Burn and the Black Burn.
- It is proposed that runoff from the proposed substation platform and the wind turbine hardstandings is attenuated by cut-off drains at the downslope side of the platforms. Runoff would then be discharged overland towards the downstream catchment.

This report is to be regarded as confidential to our Client and is intended for their use only and may not be assigned except in accordance with the contract. Consequently, and in accordance with current practice, any liability to any third party in respect of the whole or any part of its contents is hereby expressly excluded, except to the extent that the report has been assigned in accordance with the contract. Before the report or any part of it is reproduced or referred to in any document, circular or statement and before its contents or the contents of any part of it are disclosed orally to any third party, our written approval as to the form and context of such a publication or disclosure must be obtained.

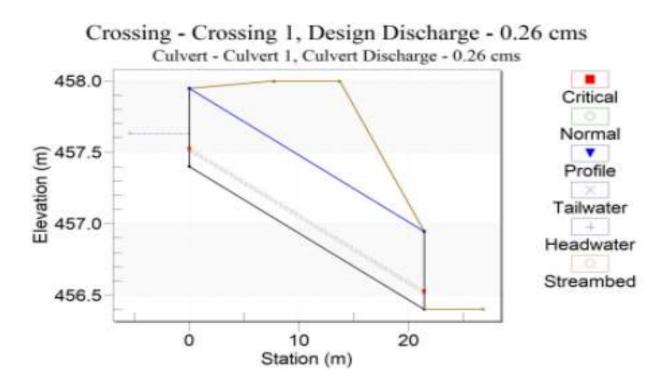
Repo	rt Ref.	Document8				
File P	ath	Document8				
Rev	Suit	Description	Date	Originator	Checker	Approver
P01	S01	First Issue	14-Jun-23	K.Ivanov	R Lucey	S.McGarva
Ref. re	ference.	Rev revision. Suit suitability.		1	1	

Appendices

Appendix A Watercourses, Buffers, Catchments and Watercourse Crossings Plan

Contains Ordnance Survey data © Crown copyright and datab ase right 2023.© Crown copyright and database rights 2023 Ordnance Survey 0100031673.

CB:SR EB:robertson_s LUC FIG08_02_11838_r0_Catchments_A3L 25/05/2023 Source: EDF, Kaya


Appendix B Proposed Culvert Capacity Check with HY-8

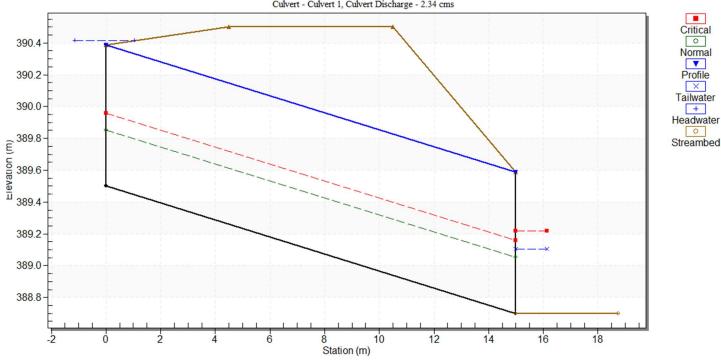
Watercourse Crossing 1 Culvert Properties

Crossing Properties			Culvert Properties	
lame: Crossing 1			Culvert 1	Add Cu
Parameter	Value	Units		Duplicate
🕜 DISCHARGE DATA				D.L.
Discharge Method	Minimum, Design, and Maximum	-		Delete C
Minimum Flow	0.230	cms	Parameter	Value
Design Flow	0.260	cms	CULVERT DATA	
Maximum Flow	0.300	cms	Name	Culvert 1
🥜 TAILWATER DATA			Shape	Arch, Open Bo
Channel Type	Rectangular Channel	-	Material	Corrugated Ste
Bottom Width	2.000	m	Size	
Channel Slope	0.0467	m/m	Span	1.829
Manning's n (channel)	0.035		Rise	0.546
Channel Invert Elevation	456.400	m	2 Embedment Depth	0.000
Rating Curve	View		Manning's n (Top/Sides)	0.020
🕜 ROADWAY DATA			Manning's n (Bottom)	0.035
Roadway Profile Shape	Constant Roadway Elevation	v	Culvert Type	Straight
First Roadway Station	0.000	m	Inlet Configuration	Thin Edge Proje
Crest Length	2.000	m	Inlet Depression?	No
Crest Elevation	458.000	m	SITE DATA	1.0
Roadway Surface	Gravel	•	Site Data Input Option	Culvert Invert
Top Width	6.000	m	Inlet Station	0.000
			Inlet Elevation	457.400
			Outlet Station	21.430
			Outlet Elevation	456,400

ulvert Culvert Culvert Units ^ • ottom Ŧ eel Define... m m mm -• jecting (Ke=0.9) • Data • m m m v m

Watercourse Crossing 1 Design Discharge

Watercourse Crossing 1 Summary Table

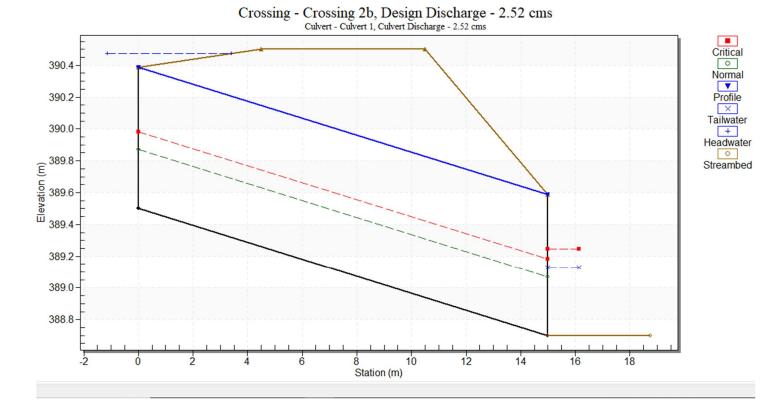

Headwater Elevation (m)	Total Discharge (cms)	Culvert 1 Discharge (cms)	Roadway Discharge (cms)	Iterations
457.61	0.23	0.23	0.00	1
457.62	0.24	0.24	0.00	1
457.62	0.24	0.24	0.00	1
457.63	0.25	0.25	0.00	1
457.63	0.26	0.26	0.00	1
457.64	0.27	0.27	0.00	1
457.64	0.27	0.27	0.00	1
457.64	0.28	0.28	0.00	1
457.65	0.29	0.29	0.00	1
457.65	0.29	0.29	0.00	1
457.66	0.30	0.30	0.00	1
458.00	0.88	0.88	0.00	Overtopping

Watercourse Crossing 2a Culvert Properties

arameter	Value		Units
🕜 DISCHARGE DATA			
Discharge Method	Minimum, Design, and Maximum	-	
Minimum Flow	2.000		cms
Design Flow	2.340		cms
Maximum Flow	2.500		cms
🕜 TAILWATER DATA			
Channel Type	Rectangular Channel	•	
Bottom Width	2.000		m
Channel Slope	0.0533		m/m
Manning's n (channel)	0.035		
Channel Invert Elevation	388.700		m
Rating Curve	View		
🕜 ROADWAY DATA			
Roadway Profile Shape	Constant Roadway Elevation	-	
First Roadway Station	0.000		m
Crest Length	2.000		m
Crest Elevation	390.500		m
Roadway Surface	Gravel	-	
Top Width	6.000		m

Culvert 1	Add Culvert			
	Duplicate Culvert			
	Delete Culvert			
Parameter	Value		Units	^
🕜 CULVERT DATA				
Name	Culvert 1			
Shape	Arch, Open Bottom	-		
? Material	Corrugated Steel	-		
Size	Define			
Span	2.438		m	
Rise	0.889		m	
② Embedment Depth	0.000		mm	
Manning's n (Top/Sides)	0.020			
Manning's n (Bottom)	0.035			
Oulvert Type	Straight	-		
Inlet Configuration	Thin Edge Projecting (Ke=0.9)	•		
Inlet Depression?	No	-		
SITE DATA				
Site Data Input Option	Culvert Invert Data	-		
Inlet Station	0.000		m	
Inlet Elevation	389.500		m	
Outlet Station	15.000		m	
Outlet Elevation	388.700		m	V

Watercourse Crossing 2a Design Discharge


Watercourse Crossing 2a Summary Table

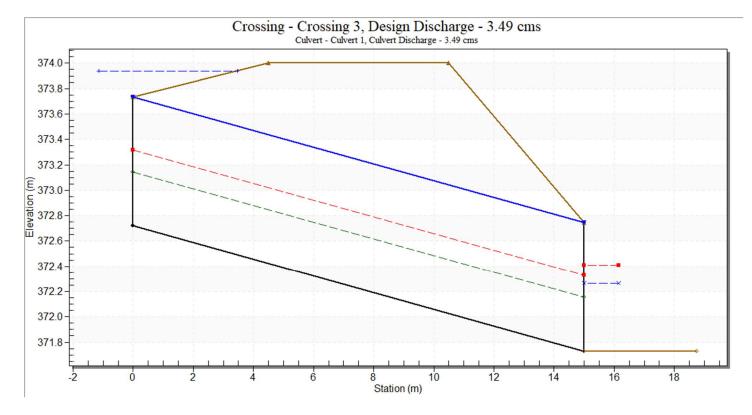
Headwater Elevation (m)	Total Discharge (cms)	Culvert 1 Discharge (cms)	Roadway Discharge (cms)	Iterations
390.31	2.00	2.00	0.00	1
390.32	2.05	2.05	0.00	1
390.34	2.10	2.10	0.00	1
390.35	2.15	2.15	0.00	1
390.37	2.20	2.20	0.00	1
390.39	2.25	2.25	0.00	1
390.40	2.30	2.30	0.00	1
390.41	2.34	2.34	0.00	1
390.43	2.40	2.40	0.00	1
390.45	2.45	2.45	0.00	1
390.47	2.50	2.50	0.00	1
390.50	2.60	2.60	0.00	Overtopping

Watercourse Crossing 2b Culvert Properties

ame: Crossing 2b	Value	Units	Culvert 1	Add Culvert		
		Units		Depicate current		
Discharge Method	Minimum, Design, and Maximum	•		Delete Culvert		
Minimum Flow	2.000	cms	Parameter	Value	Units	
Design Flow	2.520	cms	CULVERT DATA		Of Inc.	
Maximum Flow	2.600	cms	Name	Culvert 1		
7 TAILWATER DATA			Shape	Arch, Open Bottom	•	
Channel Type	Rectangular Channel	-	Material	Corrugated Steel	-	
Bottom Width	2.000	m	Size	Define	-	
Channel Slope	0.0533	m/m	Span	2.438	m	
Manning's n (channel)	0.035		Rise	0.889	m	
Channel Invert Elevation	388.700	m	2 Embedment Depth	0.000	mm	
Rating Curve	View		Manning's n (Top/Sides)	0.020		
ROADWAY DATA			Manning's n (Bottom)	0.035		
Roadway Profile Shape	Constant Roadway Elevation	•	Culvert Type	Straight	-	
First Roadway Station	0.000	m	Inlet Configuration	Thin Edge Projecting (Ke=0.9)	-	
Crest Length	2.000	m	Inlet Depression?	No	-	
Crest Elevation	390.500	m			_	
Roadway Surface	Gravel	-	Site Data Input Option	Culvert Invert Data	-	
Top Width	6.000	m	Inlet Station	0.000	m	-
			Inlet Elevation	389.500	m	-
			Outlet Station	15.000	m	-
			Outlet Elevation	388.700	m	-

Watercourse Crossing 2b Design Discharge

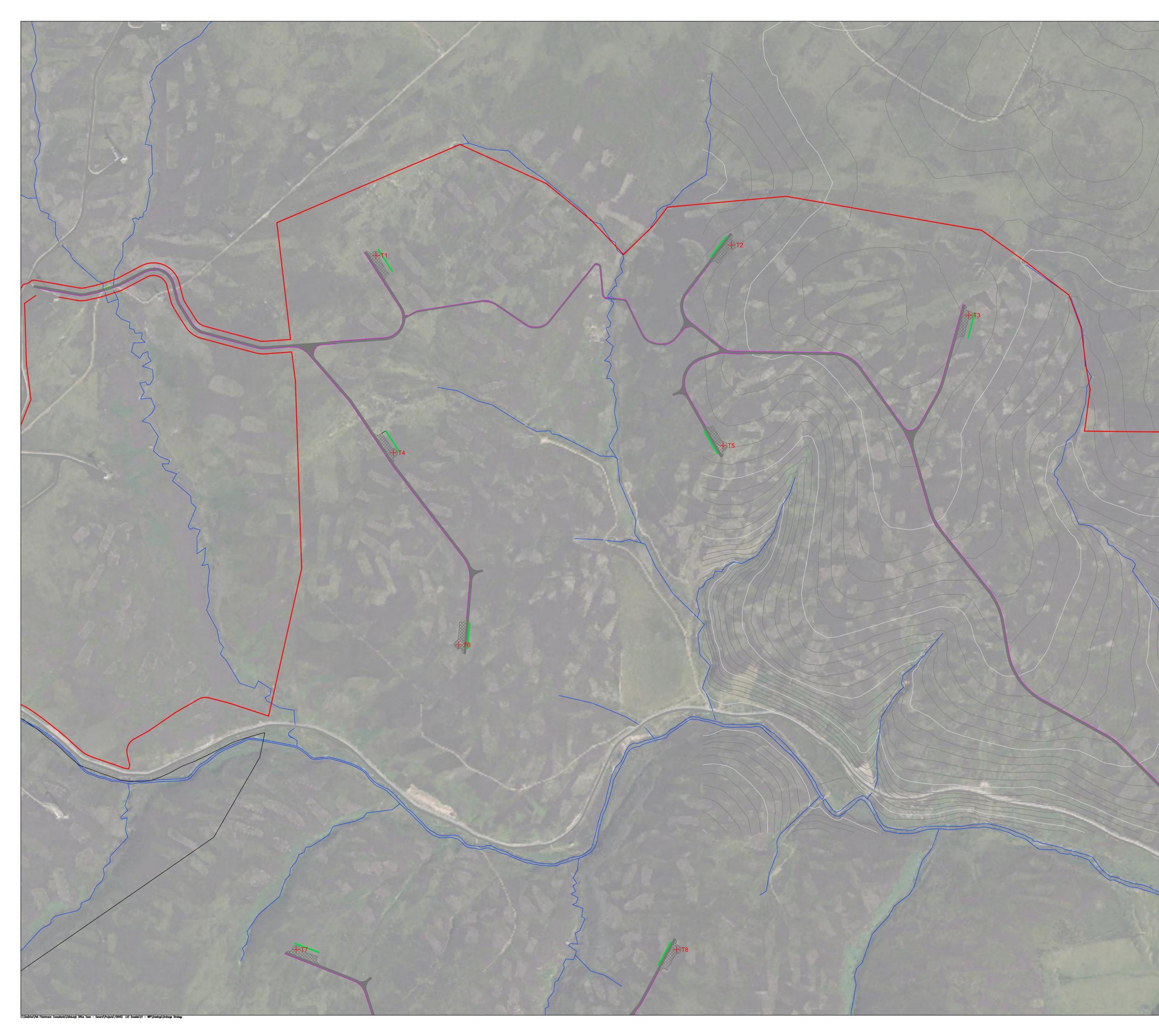
Watercourse Crossing 2b Summary Table

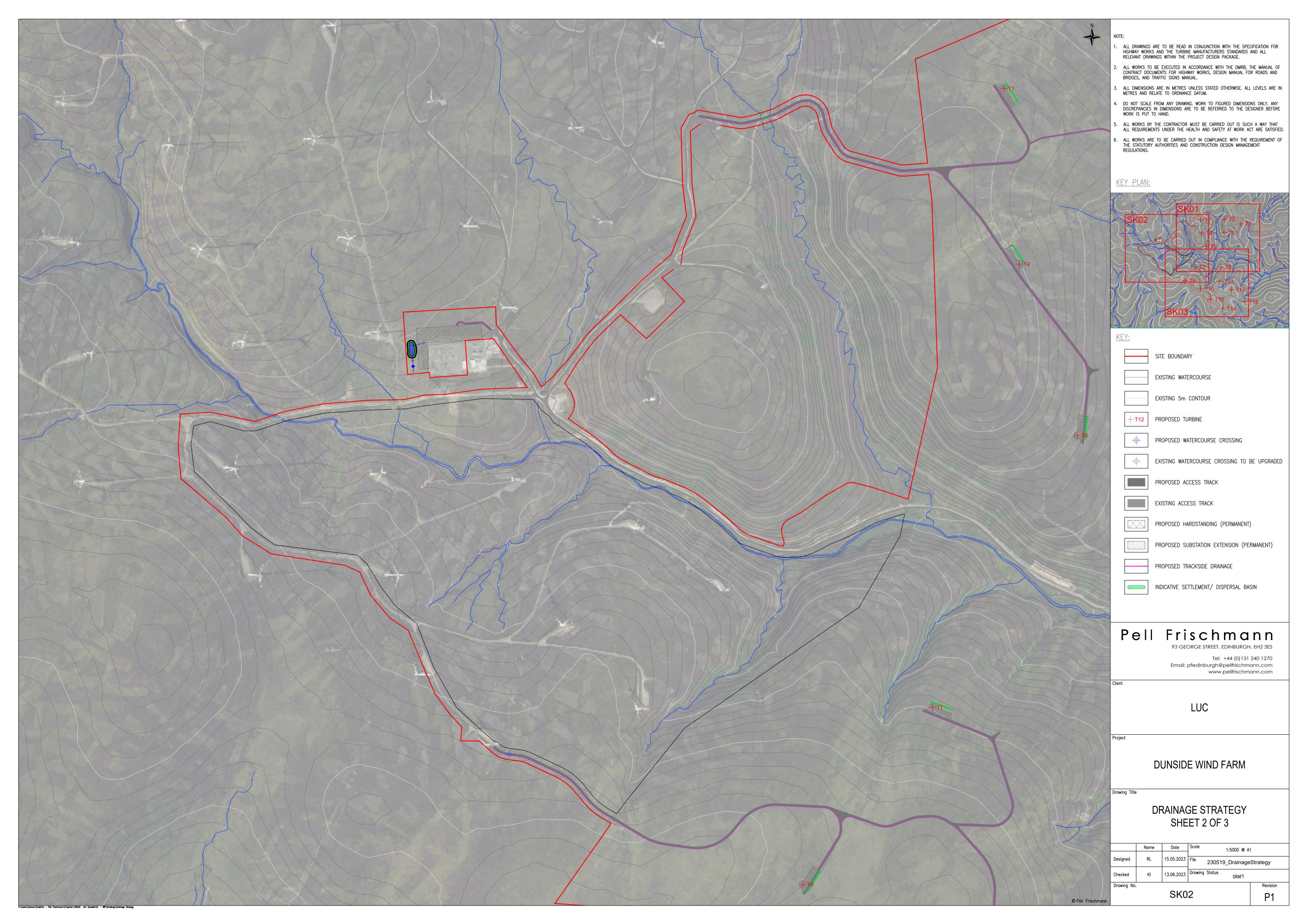

Headwater Elevation (m)	Total Discharge (cms)	Culvert 1 Discharge (cms)	Roadway Discharge (cms)	Iterations
390.31	2.00	2.00	0.00	1
390.32	2.06	2.06	0.00	1
390.34	2.12	2.12	0.00	1
390.36	2.18	2.18	0.00	1
390.38	2.24	2.24	0.00	1
390.40	2.30	2.30	0.00	1
390.42	2.36	2.36	0.00	1
390.44	2.42	2.42	0.00	1
390.46	2.48	2.48	0.00	1
390.47	2.52	2.52	0.00	1
390.50	2.60	2.60	0.00	1
390.50	2.60	2.60	0.00	Overtopping

Watercourse Crossing 3 Culvert Properties

arameter	Value	Units
OISCHARGE DATA		
ischarge Method	Minimum, Design, and Maximum	·
linimum Flow	3.010	cms
esign Flow	3.490	cms
laximum Flow	3.600	cms
> TAILWATER DATA		
hannel Type	Rectangular Channel	-
ottom Width	2.000	m
hannel Slope	0.0531	m/m
lanning's n (channel)	0.035	
hannel Invert Elevation	371.730	m
ating Curve	View	
🕖 ROADWAY DATA		
oadway Profile Shape	Constant Roadway Elevation	•
irst Roadway Station	0.000	m
rest Length	2.000	m
rest Elevation	374.000	m
oadway Surface	Gravel	•
op Width	6.000	m

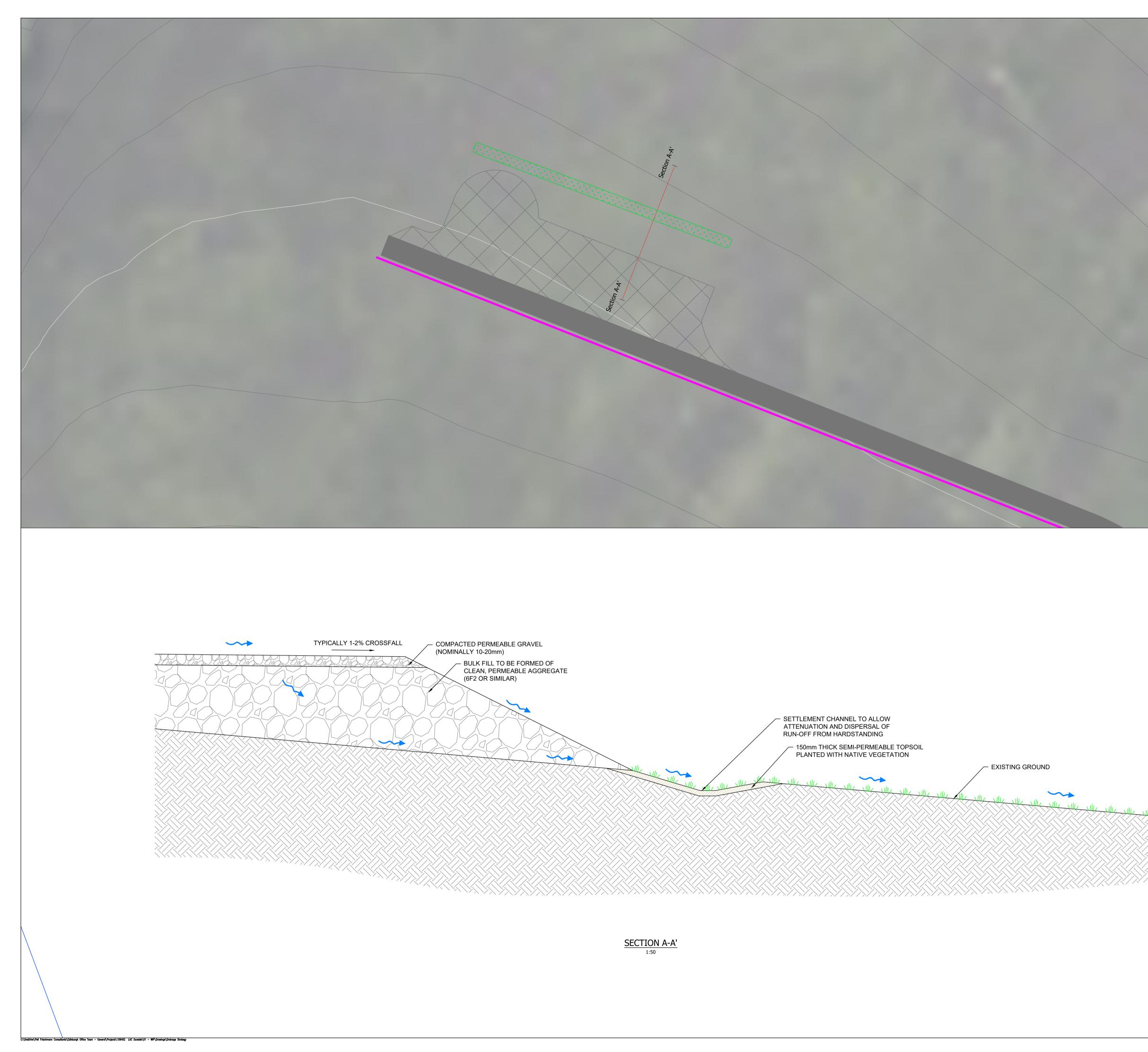
Culvert Properties				
Culvert 1	Add Culvert			
	Duplicate Culvert			
	Delete Culvert			
Parameter	Value		Units	^
🕜 CULVERT DATA				
Name	Culvert 1			
Shape	Arch, Open Bottom	-		
(2) Material	Corrugated Steel	-		
Size	Define			
Span	2.438		m	
Rise	1.016		m	
② Embedment Depth	0.000		mm	
Manning's n (Top/Sides)	0.020			
Manning's n (Bottom)	0.035			
Oulvert Type	Straight	-		
Inlet Configuration	Thin Edge Projecting (Ke=0.9)	-		
Inlet Depression?	No	-		
SITE DATA				
Site Data Input Option	Culvert Invert Data	•		
Inlet Station	0.000		m	
Inlet Elevation	372.720		m	
Outlet Station	15.000		m	
Outlet Elevation	371.730		m	Y


Watercourse Crossing 3 Design Discharge

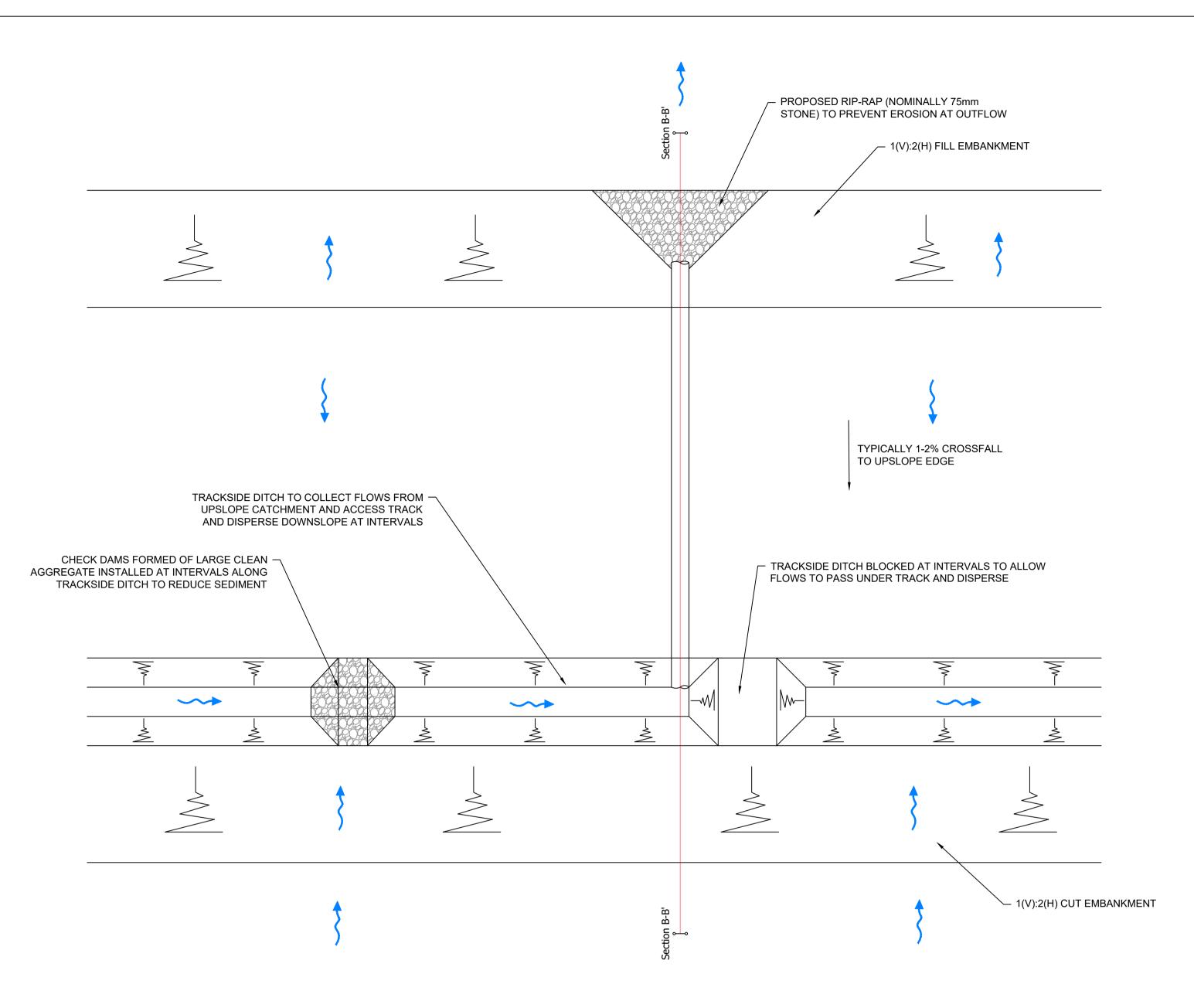

Watercourse Crossing 3 Summary Table

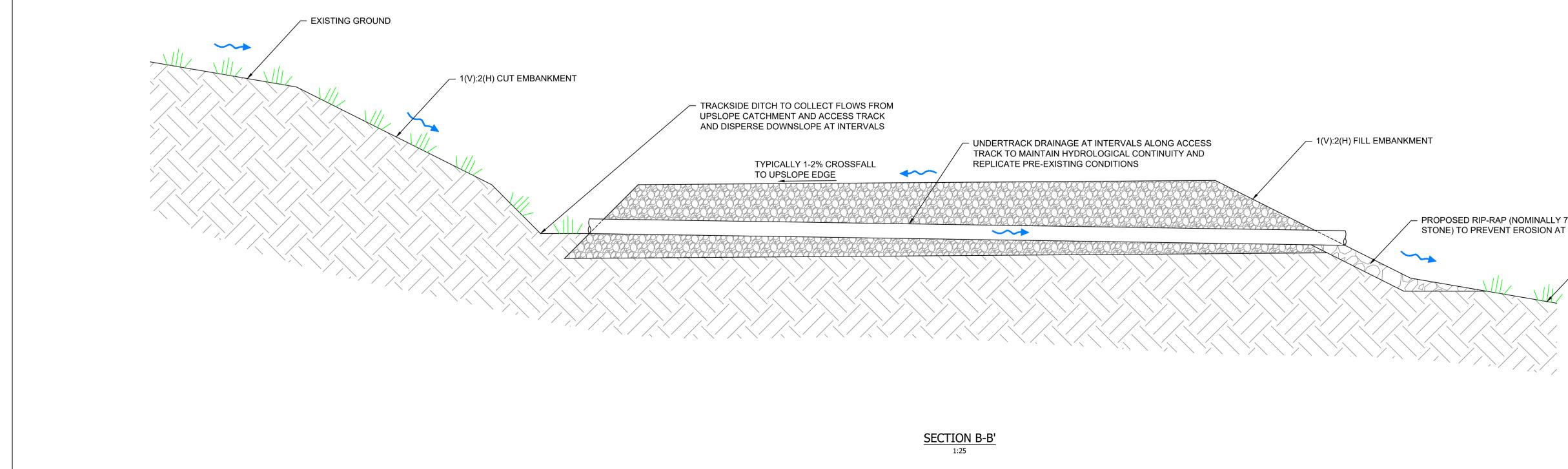
Headwater Elevation (m)	Total Discharge (cms)	Culvert 1 Discharge (cms)	Roadway Discharge (cms)	Iterations
373.79	3.01	3.01	0.00	1
373.81	3.07	3.07	0.00	1
373.83	3.13	3.13	0.00	1
373.85	3.19	3.19	0.00	1
373.86	3.25	3.25	0.00	1
373.88	3.30	3.30	0.00	1
373.90	3.36	3.36	0.00	1
373.92	3.42	3.42	0.00	1
373.94	3.49	3.49	0.00	1
373.95	3.54	3.54	0.00	1
373.97	3.60	3.60	0.00	1
374.00	3.69	3.69	0.00	Overtopping

Appendix C Drawings

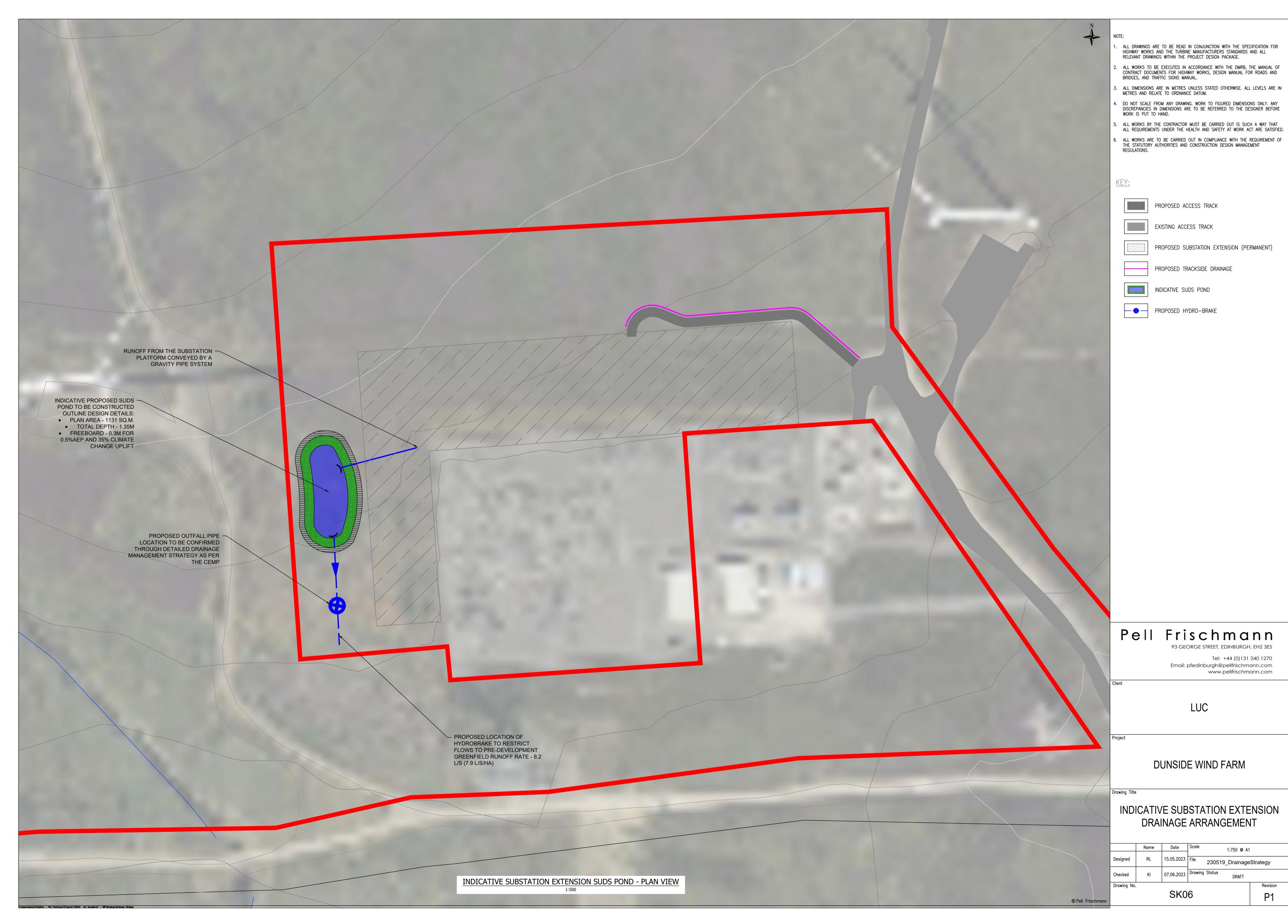


 ALL DRAWINGS ARE TO BE READ IN CONJUNCTION WITH THE SPECIFIHIGHWAY WORKS AND THE TURBINE MANUFACTURERS STANDARDS AN RELEVANT DRAWINGS WITHIN THE PROJECT DESIGN PACKAGE. ALL WORKS TO BE EXECUTED IN ACCORDANCE WITH THE DMRB, TH CONTRACT DOCUMENTS FOR HIGHWAY WORKS, DESIGN MANUAL FOR BRIDGES, AND TRAFFIC SIGNS MANUAL. ALL DIMENSIONS ARE IN METRES UNLESS STATED OTHERWISE. ALL METRES AND RELATE TO ORDNANCE DATUM. DO NOT SCALE FROM ANY DRAWING. WORK TO FIGURED DIMENSIONS DISCREPANCIES IN DIMENSIONS ARE TO BE REFERRED TO THE DESIWORK IS PUT TO HAND. ALL WORKS BY THE CONTRACTOR MUST BE CARRIED OUT IS SUCH ALL REQUIREMENTS UNDER THE HEALTH AND SAFETY AT WORK ACT ALL WORKS ARE TO BE CARRIED OUT IN COMPLIANCE WITH THE RE THE STATUTORY AUTHORITIES AND CONSTRUCTION DESIGN MANAGEMIREGULATIONS. 	ND ALL IE MANUAL OF ROADS AND LEVELS ARE IN S ONLY. ANY GNER BEFORE A WAY THAT ARE SATISFIED. EQUIREMENT OF
KEY PLAN: SK01 SK02 F	
KEY: SITE BOUNDARY EXISTING WATERCOURSE EXISTING 5m CONTOUR +T12 PROPOSED TURBINE PROPOSED WATERCOURSE CROSSING EXISTING WATERCOURSE CROSSING TO BE PROPOSED ACCESS TRACK PROPOSED ACCESS TRACK PROPOSED HARDSTANDING (PERMANENT) PROPOSED TRACKSIDE DRAINAGE INDICATIVE SETTLEMENT/ DISPERSAL BASI	MANENT)
Pell Frischma 93 GEORGE STREET, EDINBURGH. Tel: +44 (0)131 2 Email: pfedinburgh@pellfrischman www.pellfrischman	EH2 3ES 40 1270 nn.com
LUC Project DUNSIDE WIND FARM	
Drawing Title DRAINAGE STRATEGY SHEET 1 OF 3 Name Date Scale 1:5000 @ A1 Designed RL 19.05.2023 File Designed RL	
Checked KI 19.05.2023 Drawing Status DRAFT	
Drawing No. SK01	Revision P1





	 NOTE: 1. ALL DRAWINGS ARE TO BE READ IN CONJUNCTION WITH THE SPECIFICATION FOR HIGHWAY WORKS AND THE TURBINE MANUFACTURERS STANDARDS AND ALL RELEVANT DRAWINGS WITHIN THE PROJECT DESIGN PACKAGE. 2. ALL WORKS TO BE EXECUTED IN ACCORDANCE WITH THE DMRB, THE MANUAL OF CONTRACT DOCUMENTS FOR HIGHWAY WORKS, DESIGN MANUAL FOR ROADS AND BRIDGES, AND TRAFFIC SIGNS MANUAL. 3. ALL DIMENSIONS ARE IN METRES UNLESS STATED OTHERWISE. ALL LEVELS ARE IN METRES AND RELATE TO ORDNANCE DATUM. 4. DO NOT SCALE FROM ANY DRAWING. WORK TO FIGURED DIMENSIONS ONLY. ANY DISCREPANCIES IN DIMENSIONS ARE TO BE REFERRED TO THE DESIGNER BEFORE WORK IS PUT TO HAND. 5. ALL WORKS BY THE CONTRACTOR MUST BE CARRIED OUT IS SUCH A WAY THAT ALL REQUIREMENTS UNDER THE HEALTH AND SAFETY AT WORK ACT ARE SATISFIED. 6. ALL WORKS ARE TO BE CARRIED OUT IN COMPLIANCE WITH THE REQUIREMENT OF THE STATUTORY AUTHORITIES AND CONSTRUCTION DESIGN MANAGEMENT REGULATIONS.
	SK02 F F F F F F F F F F F
	EXISTING 5m CONTOUR
	+T12 PROPOSED TURBINE
	EXISTING WATERCOURSE CROSSING TO BE UPGRADED
	PROPOSED ACCESS TRACK
	EXISTING ACCESS TRACK
	PROPOSED HARDSTANDING (PERMANENT)
	PROPOSED SUBSTATION EXTENSION (PERMANENT)
	PROPOSED TRACKSIDE DRAINAGE
	INDICATIVE SETTLEMENT/ DISPERSAL BASIN
	Pell Frischmann
	93 GEORGE STREET, EDINBURGH. EH2 3ES Tel: +44 (0)131 240 1270 Email: pfedinburgh@pellfrischmann.com www.pellfrischmann.com
T15	LUC
	Project
	DUNSIDE WIND FARM
	Drawing Title DRAINAGE STRATEGY SHEET 3 OF 3
	Name Date Scale 1:5000 @ A1 Designed RL 19.05.2023 File 230519_DrainageStrategy
	Checked KI 19.05.2023 Drawing Status DRAFT
© Pell Frischmann	Drawing No. Revision P1


	NOTE: 1. ALL DRAWINGS ARE TO BE READ IN CONJUNCTION WITH THE SPECIFICATION FOR HICHWAY WORKS AND THE TURBINE MANUFACTURERS STANDARDS AND ALL RELEVANT DRAWINGS WITHIN THE PROJECT DESIGN PACKAGE. 2. ALL WORKS TO BE EXECUTED IN ACCORDANCE WITH THE DMRB, THE MANUAL OF CONTRACT DOCUMENTS FOR HIGHWAY WORKS, DESIGN MANUAL FOR ROADS AND BRIDGES, AND TRAFFIC SIGNS MANUAL. 3. ALL DIMENSIONS ARE IN METRES UNLESS STATED OTHERWISE. ALL LEVELS ARE IN METRES AND RELATE TO ORDNANCE DATUM. 4. DO NOT SCALE FROM ANY DRAWING, WORK TO FIGURED DIMENSIONS ONLY, ANY DISCREPARCIES IN DIMENSIONS ARE TO BE REFERRED TO THE DESIGNER BEFORE WORK IS PUT TO HAND. 5. ALL WORKS BY THE CONTRACTOR MUST BE CARRIED OUT IS SUCH A WAY THAT ALL REQUIREMENTS UNDER THE HEALTH AND SAFETY AT WORK ACT ARE SATISFIED. 6. ALL WORKS ARE TO BE CARRIED OUT IN COMPLIANCE WITH THE REQUIREMENT OF THE STATUTORY AUTHORITIES AND CONSTRUCTION DESIGN MANAGEMENT REGULATIONS. KEY: EXISTING 5m CONTOUR PROPOSED ACCESS TRACK PROPOSED HARDSTANDING (PERMANENT) PROPOSED TRACKSIDE DRAINAGE INDICATIVE SETTLEMENT/ DISPERSAL BASIN
	Pell Frischmann 33 George Street, Edinburgh. EH2 3ES
© Pell Frischmann	Tel: +44 (0) 131 240 1270 Email: pfedinburgh@pellfrischmann.com www.pellfrischmann.com Client LUC Project DUNSIDE WIND FARM DUNSIDE WIND FARM

INDICATIVE TRACKSIDE DRAINAGE ARRANGEMENT - PLAN VIEW 1:50

	NOTE: 1. ALL DRAWINGS ARE TO BE READ IN CONLUNCTION WITH THE SPECIFICATION FOR RELEVANT DRAWINGS WITH THE PROJECT DESIGN PACAGAGE. 2. ALL WORKS TO BE EXECUTED IN ACCORDANCE WITH THE DMRB, THE MANUAL OF CONTRACT DOCUMENTS FOR HIGHMAX WORKS, DESIGN MANUAL, FOR ROADS AND BRODDS, AND TREATE SIDN SAMAULA. 3. ALL DIMENSIONS ARE IN METRES UNLESS STATED OTHERWISE. ALL LEVELS ARE IN METRES AND RELIATE 10 ORIGINAL BATUM. 4. DO NOT SCALE FROM ANY DRAWING, WORK TO FIDURED DIMENSIONS ONLY, ANY DOCREPANCES IN DUMENSION ARE TO BE REFERRED TO THE DESIGNER METORE WORK IS PT TO TO MAND. 5. ALL WORKS BY THE CONTRACTOR MUST BE CARRED OUT IS SUCH A WAY THAT ALL REQUERDINS UNDER THE PACIFIA MUST BE CARRED OUT IS SUCH A WAY THAT ALL REQUERDINS UNDER THE PACIFIA MUST BE CARRED OUT IN SUCH A WAY THAT ALL REQUERDINS UNDER THE PACIFIA MUST BE CARRED OUT IN SUCH A WAY THAT ALL REQUERDINS UNDER THE PACIFIA MUST BE CARRED OUT IN SUCH A WAY THAT ALL REQUERDINS UNDER THE PACIFIA MUST BE CARRED OUT IN SUCH A WAY THAT ALL REQUERDINS UNDER THE PACIFIA MUST BE CARRED OUT IN SUCH A WAY THAT ALL REQUERDINS UNDER THE PACIFIA MUST BE CARRED OUT IN SUCH A WAY THAT ALL REQUERDINS UNDER THE PACIFIA MUST BE CARRED OUT IN COMPLIANCE WITH THE REQUERDMENT OF THE STATUTORY AUTORITIES AND CONSTRUCTION DESIGN MANAGEMENT FROM ATIONS.
	Pell Frischmann 93 GEORGE STREET, EDINBURGH. EH2 3ES Tel: +44 (0)131 240 1270 Email: pfedinburgh@pellfrischmann.com www.pellfrischmann.com
75mm T OUTFLOW — EXISTING GROUND	Project DUNSIDE WIND FARM
,	Drawing Title INDICATIVE TRACKSIDE DRAINAGE ARRANGEMENT
	Name Date Scale 1:50 @ A1 Designed RL 19.05.2023 File 230519_DrainageStrategy Checked KI 19.05.2023 Drawing Status DRAFT
© Pell Frischmann	Drawing No. Revision P1

P1

Appendix D MicroDrainage Attenuation

Pell Frischmann							Page 1
5 Manchester Square							
London							
W1U 3PD							Micco
Date 08/06/2023 10:01		Doc	igned b	17 VT17	22022		– Micro
	-		-	-	110 V		Drainage
File SUDS.SRCX			cked by				
Innovyze		Sou	rce Con	trol 2	2020.1		
Summary c	of Results	for 2	00 year	Retu	rn Per	riod (+35%)	-
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth Co				
		(m)	(m)	(1/s)	(m³)		
1 5	min Summer	0 331	0 331	8.2	247.5	ОК	
	min Summer			8.2	346.3	0 K	
	min Summer				450.2		
	min Summer			8.2	558.8		
	min Summer			8.2			
240	min Summer	0.810	0.810	8.2	664.2	ОК	
	min Summer			8.2			
) min Summer			8.2			
	min Summer			8.2	764.6		
	min Summer			8.2			
	min Summer			8.2	779.8		
) min Summer) min Summer			8.2 8.2	779.3 762.1		
) min Summer			8.2			
) min Summer			8.2		0 K	
	min Summer			8.2			
7200	min Summer	0.665	0.665	8.2	530.7	O K	
8640	min Summer	0.569	0.569	8.2	445.4	O K	
10080	min Summer	0.489	0.489	8.2	377.0	O K	
	min Winter			8.2		O K	
30) min Winter	0.505	0.505	8.2	389.0	ОК	
	Storm	Rain	Flooded	l Disch	arge T:	ime-Peak	
	Event	(mm/hr)	Volume	Volu	ıme	(mins)	
1		(,,					
:		、 <i>,</i>	(m³)	(m ²	3)		
	min Summer			(m ³		19	
15	min Summer min Summer		0.0	(m ³) 2	3) 42.2 43.4	19 34	
15 30	min Summer	103.865	6 0.0 6 0.0	(m ³) 2) 3	42.2		
15 30 60	min Summer	103.865 73.226 48.326	6 0.0 6 0.0 6 0.0	(m ³) 2 0 3 0 4	42.2 43.4	34	
15 30 60 120 180	min Summer min Summer min Summer min Summer	103.865 73.226 48.326 30.750 23.380	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 2) 3) 4) 5) 6	42.2 43.4 65.3 92.7 76.0	34 64 122 182	
15 30 60 120 180 240	min Summer min Summer min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202	0 0	(m ³) 2) 3) 4) 5) 6) 7	42.2 43.4 65.3 92.7 76.0 40.1	34 64 122 182 242	
15 30 60 120 180 240 360	min Summer min Summer min Summer min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502		(m ³) 2) 3) 4) 5) 6) 7) 8	42.2 43.4 65.3 92.7 76.0 40.1 37.9	34 64 122 182 242 362	
15 30 60 120 180 240 360 480	min Summer min Summer min Summer min Summer min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502 11.865	5 0.0 5 0.0 6 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	(m ³) 2) 2) 3) 4) 5) 6) 7) 8) 9	42.2 43.4 65.3 92.7 76.0 40.1 37.9 13.0	34 64 122 182 242 362 480	
15 30 60 120 180 240 360 480 600	min Summer min Summer min Summer min Summer min Summer min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502 11.865 10.147		(m ³) 2) 3) 4) 5) 6) 7) 8) 9) 9	42.2 43.4 65.3 92.7 76.0 40.1 37.9 13.0 74.6	34 64 122 182 242 362 480 600	
15 30 60 120 180 240 360 480 600 720	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926		(m ³) 2) 3) 4) 5) 6) 7) 8) 7) 8) 9) 9) 9) 10	42.2 43.4 65.3 92.7 76.0 40.1 37.9 13.0 74.6 26.9	34 64 122 182 242 362 480 600 714	
15 30 60 120 180 240 360 480 600 720 960	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289		(m ³) 2) 3) 4) 5) 6) 7) 8) 9) 9) 9) 10) 11	42.2 43.4 65.3 92.7 76.0 40.1 37.9 13.0 74.6 26.9 11.5	34 64 122 182 242 362 480 600 714 820	
15 30 60 120 180 240 360 480 600 720 960 1440	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926		(m ³) 2) 2) 3) 4) 5) 6) 7) 8) 9) 9) 9) 10) 11	42.2 43.4 65.3 92.7 76.0 40.1 37.9 13.0 74.6 26.9	34 64 122 182 242 362 480 600 714	
15 30 60 120 180 240 360 480 600 720 960 1440 2160	min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476		(m ³) 2) 3) 4) 5) 6) 7) 8) 9) 9) 9) 10) 11) 11	42.2 43.4 65.3 92.7 76.0 40.1 37.9 13.0 74.6 26.9 11.5 97.8	34 64 122 182 242 362 480 600 714 820 1082	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112		(m ³) 2) 3) 4) 5) 6) 7) 8) 9) 9) 9) 10) 11) 11) 14) 15	42.2 43.4 65.3 92.7 76.0 40.1 37.9 13.0 74.6 26.9 11.5 97.8 38.1	34 64 122 182 242 362 480 600 714 820 1082 1492	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351		(m ³) 2) 3) 4) 5) 6) 7) 8) 9) 9) 9) 10) 11) 11) 14) 15) 17	42.2 43.4 65.3 92.7 76.0 40.1 37.9 13.0 74.6 26.9 11.5 97.8 38.1 61.6	34 64 122 182 242 362 480 600 714 820 1082 1492 1904	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507		(m ³) 2 3 4 5 6 7 8 9 9 9 10 11 11 14 15 17 9 19 19	42.2 43.4 65.3 92.7 76.0 40.1 37.9 13.0 74.6 26.9 11.5 97.8 38.1 61.6 47.7	34 64 122 182 242 362 480 600 714 820 1082 1492 1904 2764	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735 1.521		(m ³) 2 3 4 5 6 7 8 9 9 9 10 10 11 11 14 15 17 19 20 21	42.2 43.4 65.3 92.7 76.0 40.1 37.9 13.0 74.6 26.9 11.5 97.8 38.1 61.6 47.7 05.6 27.6 32.2	34 64 122 182 242 362 480 600 714 820 1082 1492 1904 2764 3576 4392 5096	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735 1.521 1.361		(m ³) 2 3 4 5 6 7 8 9 9 9 10 10 11 11 14 15 17 19 20 22 22	42.2 43.4 65.3 92.7 76.0 40.1 37.9 13.0 74.6 26.9 11.5 97.8 38.1 61.6 47.7 05.6 27.6 32.2 22.9	34 64 122 182 242 362 480 600 714 820 1082 1492 1904 2764 3576 4392 5096 5752	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735 1.521 1.361		(m ³) 2 3 4 5 6 7 8 9 9 9 10 10 11 11 14 15 17 19 12 20 21 22 22 22 22	42.2 43.4 65.3 92.7 76.0 40.1 37.9 13.0 74.6 26.9 11.5 97.8 38.1 61.6 47.7 05.6 27.6 32.2 22.9 71.9	34 64 122 182 242 362 480 600 714 820 1082 1492 1904 2764 3576 4392 5096 5752 19	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	min Summer min Summer	103.865 73.226 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735 1.521 1.361		(m ³) 2 3 4 5 6 7 8 9 9 9 10 10 11 11 14 15 17 19 12 20 21 22 22 22 22	42.2 43.4 65.3 92.7 76.0 40.1 37.9 13.0 74.6 26.9 11.5 97.8 38.1 61.6 47.7 05.6 27.6 32.2 22.9	34 64 122 182 242 362 480 600 714 820 1082 1492 1904 2764 3576 4392 5096 5752	

Pell Frischmann						Page 2
Manchester Square						
London						
W1U 3PD						Micro
Date 08/06/2023 10:01	Desi	igned b	y KIv	anov		
File SUDS.SRCX		cked by	-			Drainag
Innovyze		rce Con		2020	1	
Innovy20		200 0011	0101	2020.	-	
Summary of Result:	s for 2	00 vear	Retu	rn Pe	riod (+35	58)
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth Co	ontrol	Volume		
	(m)	(m)	(1/s)	(m³)		
60 min Winte	r 0.638	0.638	8.2	506.7	ОК	
120 min Winte			8.2			
180 min Winte	r 0.849	0.849	8.2	701.6	ОК	
240 min Winte	r 0.900	0.900	8.2	751.2	ОК	
360 min Winte			8.2	815.4	O K	
480 min Winte			8.2			
600 min Winte				877.8		
720 min Winte			8.3			
960 min Winte 1440 min Winte			8.4 8.4	902.8 897.1		
2160 min Winte			8.3			
2880 min Winte			8.2			
4320 min Winte			8.2	721.3		
5760 min Winte	r 0.753	0.753	8.2	610.9	ОК	
7200 min Winte	r 0.601	0.601	8.2	473.2	ОК	
8640 min Winte				354.0		
10080 min Winte	r 0.349	0.349	8.2	262.2	O K	
Storm	Bain	Flooder	1 Disc	arge T	'ime-Peak	
Storm Event	Rain (mm/hr)			-	'ime-Peak (mins)	
	Rain (mm/hr)			ume	'ime-Peak (mins)	
Event	(mm/hr)	Volume (m³)	Vol (m	ume ³)	(mins)	
Event 60 min Winter	(mm/hr) 48.326	Volume (m ³)	Vol (m	ume 3) 521.4	(mins) 62	
Event 60 min Winter 120 min Winter	(mm/hr) 48.326 30.750	Volume (m ³) 0.0	Vol (m	ume 3) 521.4 563.9	(mins) 62 122	
Event 60 min Winter	(mm/hr) 48.326 30.750 23.380	Volume (m ³) 0.0 0.0	Vol (m	ume 3) 521.4 563.9 757.0	(mins) 62	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502	Volume (m ³) 0.0 0.0 0.0	Vol (m	ume 3) 521.4 563.9	(mins) 62 122 180	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Vol (m	ume ³) 521.4 563.9 757.0 328.6	(mins) 62 122 180 238	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147	Volume (m ³)	Vol (m) 5) 6) 6) 7) 6) 7) 7) 7) 7 (1)) 10	ume 3) 521.4 563.9 757.0 328.6 937.5 020.7 088.3	(mins) 62 122 180 238 354 468 582	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926	Volume (m ³)	Vol (m) 5) 6) 6) 7) 6) 6) 7) 6) 7) 7 (1)) 10) 11	ume 3) 521.4 563.9 757.0 328.6 937.5 920.7 988.3 144.5	(mins) 62 122 180 238 354 468 582 692	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289	Volume (m ³) 0 0 0 0 0 0	Vol (m 0 5 0 6 0 7 0 6 0 7 0 10 0 10 0 11 0 12	ume 3) 521.4 563.9 757.0 328.6 937.5 920.7 988.3 144.5 227.6	(mins) 62 122 180 238 354 468 582 692 904	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12	ume 3) 521.4 563.9 757.0 328.6 937.5 920.7 988.3 144.5 227.6 233.7	(mins) 62 122 180 238 354 468 582 692 904 1138	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12 0 12 0 12	ume 3) 521.4 563.9 757.0 328.6 937.5 020.7 088.3 144.5 227.6 233.7 510.6	(mins) 62 122 180 238 354 468 582 692 904 1138 1604	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12 0 12 0 12 0 12	ume 3) 521.4 563.9 757.0 328.6 937.5 920.7 988.3 144.5 227.6 233.7	(mins) 62 122 180 238 354 468 582 692 904 1138	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12 0 12 0 12 0 12 0 12 0 12	ume 3) 521.4 563.9 757.0 328.6 937.5 020.7 088.3 144.5 227.6 233.7 510.6 748.8	(mins) 62 122 180 238 354 468 582 692 904 1138 1604 2072	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 22	ume 3) 521.4 563.9 757.0 328.6 37.5 020.7 088.3 144.5 227.6 233.7 510.6 748.8 954.7 134.5 2271.3	(mins) 62 122 180 238 354 468 582 692 904 1138 1604 2072 2980	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735 1.521	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 22 0 22 0 23	ume 3) 521.4 563.9 757.0 328.6 937.5 020.7 088.3 144.5 227.6 233.7 510.6 748.8 054.7 134.5 271.3 388.7	(mins) 62 122 180 238 354 468 582 692 904 1138 1604 2072 2980 3864 4616 5272	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735 1.521	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 22 0 22 0 23	ume 3) 521.4 563.9 757.0 328.6 37.5 020.7 088.3 144.5 227.6 233.7 510.6 748.8 954.7 134.5 2271.3	(mins) 62 122 180 238 354 468 582 692 904 1138 1604 2072 2980 3864 4616	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735 1.521	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 22 0 22 0 23	ume 3) 521.4 563.9 757.0 328.6 937.5 020.7 088.3 144.5 227.6 233.7 510.6 748.8 054.7 134.5 271.3 388.7	(mins) 62 122 180 238 354 468 582 692 904 1138 1604 2072 2980 3864 4616 5272	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735 1.521	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 22 0 22 0 23	ume 3) 521.4 563.9 757.0 328.6 937.5 020.7 088.3 144.5 227.6 233.7 510.6 748.8 054.7 134.5 271.3 388.7	(mins) 62 122 180 238 354 468 582 692 904 1138 1604 2072 2980 3864 4616 5272	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735 1.521	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 22 0 22 0 23	ume 3) 521.4 563.9 757.0 328.6 937.5 020.7 088.3 144.5 227.6 233.7 510.6 748.8 054.7 134.5 271.3 388.7	(mins) 62 122 180 238 354 468 582 692 904 1138 1604 2072 2980 3864 4616 5272	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735 1.521	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 22 0 22 0 23	ume 3) 521.4 563.9 757.0 328.6 937.5 020.7 088.3 144.5 227.6 233.7 510.6 748.8 054.7 134.5 271.3 388.7	(mins) 62 122 180 238 354 468 582 692 904 1138 1604 2072 2980 3864 4616 5272	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735 1.521	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 22 0 22 0 23	ume 3) 521.4 563.9 757.0 328.6 937.5 020.7 088.3 144.5 227.6 233.7 510.6 748.8 054.7 134.5 271.3 388.7	(mins) 62 122 180 238 354 468 582 692 904 1138 1604 2072 2980 3864 4616 5272	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735 1.521	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 22 0 22 0 23	ume 3) 521.4 563.9 757.0 328.6 937.5 020.7 088.3 144.5 227.6 233.7 510.6 748.8 054.7 134.5 271.3 388.7	(mins) 62 122 180 238 354 468 582 692 904 1138 1604 2072 2980 3864 4616 5272	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.326 30.750 23.380 19.202 14.502 11.865 10.147 8.926 7.289 5.476 4.112 3.351 2.507 2.038 1.735 1.521	Volume (m ³) 0	Vol (m) 0 5 0 6 0 7 0 8 0 9 0 10 0 10 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 22 0 22 0 23	ume 3) 521.4 563.9 757.0 328.6 937.5 020.7 088.3 144.5 227.6 233.7 510.6 748.8 054.7 134.5 271.3 388.7	(mins) 62 122 180 238 354 468 582 692 904 1138 1604 2072 2980 3864 4616 5272	

Pell Frischmann		Page 3
5 Manchester Square		
London		
W1U 3PD		Micro
Date 08/06/2023 10:01	Designed by KIvanov	- Micro Drainage
File SUDS.SRCX	Checked by	Dialitada
Innovyze	Source Control 2020.1	
	Rainfall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	200 Cv (Summer) 0	
M5-60 (mm)	land and Ireland Cv (Winter) 0 15.600 Shortest Storm (mins)	
Ratio R	0.258 Longest Storm (mins) 1	
Summer Storms	Yes Climate Change %	+35
	Time Area Diagram	
Т	otal Area (ha) 1.300	
	Time (mins) Area From: To: (ha)	
	0 4 1.300	
	0 4 1.300	

©1982-2020 Innovyze

Pell Frischmann					Page 4
5 Manchester Square					
London					
W1U 3PD					Micro
Date 08/06/2023 10:01	_	ed by KI	vanov		Drainage
File SUDS.SRCX	Checked	-			Brainacje
Innovyze	Source	Control	2020.1		
	1odel De	taile			
<u></u>	IOUEL DE	lalls			
Storage is Or	nline Cov	er Level	(m) 1.352		
Tank	or Pond	Structu	re		
Inve	rt Level	(m) 0.000)		
Depth (m) Area (m²) Depth (m) Are	ea (m²) D			Depth (m)	Area (m²)
0.000 700.0 0.500	847.8	1.000	1009.6	1.350	1131.4
Hydro-Brake®	Optimur	m Outflo	w Control	<u>L</u>	
			-0133-8200-		
-	n Head (m Flow (l/s			1.000 8.2	
	Flush-Flo		C	alculated	
	-		lse upstrea	-	
	pplicatic Availabl			Surface Yes	
-	meter (mn			133	
	Level (m			0.000	
Minimum Outlet Pipe Dia Suggested Manhole Dia				150 1200	
Control Po) Flow (1/:		
Design Point (Ca				.2	
) 1.00 ™ 0.30		.2	
	Kick-Flo	® 0.66	2 6	. 8	
Mean Flow over H	lead Rang	e	- 7	.0	
The hydrological calculations have b Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	Should ar	nother typ	be of contr	ol device d	other than a
Depth (m) Flow (l/s) Depth (m) Flow	r (l/s) D	epth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100 4.8 1.200	8.9	3.000	13.8		20.6
0.200 7.9 1.400 0.300 8.2 1.600	9.6 10.2	3.500 4.000	14.8 15.8		21.3 22.0
0.400 8.1 1.800	10.2	4.500	16.7		22.0
0.500 7.8 2.000	11.4	5.000	17.6		23.3
0.600 7.4 2.200 0.800 7.4 2.400	11.9 12.4	5.500 6.000	18.4 19.2		23.9
1.000 8.2 2.600	12.9	6.500	19.9		
,					
©198	82-2020	Innovyze	9		

Pell Frischmann								Page 1
5 Manchester Square								
London								
W1U 3PD								Micro
Date 08/06/2023 10:0	13	De	esign	ed by	, KI	vanov		
File SUDS Turbine.SR	KCX	Cł	hecke	d by				Drainage
Innovyze					rol	2020.	.1	
							· _	
Summarv	of Result:	s for	200	vear	Ret	urn P	eriod (+35%)	
				<u></u>				
٤	Storm	Max	Max	Мах	c	Max	Status	
F	Event	Level	Depth	Contr	col '	Volume		
		(m)	(m)	(1/s	3)	(m³)		
15	min Summer	0.376	0.376	1	1.4	45.7	ОК	
	min Summer					63.9	O K	
60	min Summer	0.611	0.611	1	L.4	83.1	O K	
120	min Summer	0.718	0.718	1	1.4	102.7	O K	
180	min Summer	0.776	0.776	1	1.4	113.9	O K	
	min Summer				1.4	121.6	O K	
	min Summer				1.4	131.1	O K	
	min Summer					136.4	O K	
	min Summer				1.4	139.4	O K	
	min Summer min Summer						Flood Risk Flood Risk	
	min Summer						Flood Risk	
	min Summer					137.9	O K	
	min Summer				1.4	133.6	0 K	
	min Summer				1.4	123.4	ΟK	
5760	min Summer	0.769	0.769	1	1.4	112.6	O K	
7200	min Summer	0.714	0.714	1	1.4	101.9	O K	
	min Summer					91.5	O K	
	min Summer					81.2	O K	
	min Winter min Winter					51.3 71.9		
	Storm	Rai	n Fle	ooded	Dise	charge	Time-Peak	
	Event	(mm/ł	•	olume (m³)		olume (m³)	(mins)	
1 с	min Cumman	100 (265	0 0		46.3	1.0	
	5 min Summer) min Summer			0.0 0.0		46.3 65.3	19 34	
) min Summer			0.0		86.8	64	
) min Summer			0.0		110.4	122	
) min Summer			0.0		125.9	182	
) min Summer			0.0		137.9	242	
) min Summer			0.0		156.2	362	
) min Summer			0.0		170.3	482	
) min Summer) min Summer		147 926	0.0 0.0		181.9 191.9	600 718	
) min Summer) min Summer			0.0		207.9	828	
) min Summer		476	0.0		213.1	1084	
) min Summer		112	0.0		266.3	1496	
) min Summer		351	0.0		289.3	1928	
) min Summer		507	0.0		324.3	2764	
) min Summer		038	0.0		352.1	3576	
) min Summer		735	0.0		374.7	4392	
) min Summer		521	0.0		394.2	5184	
) min Summer 5 min Winter		361 865	0.0 0.0		411.4 51.9	5952 19	
) min Winter) min Winter			0.0		73.1	33	
			-					

					Page 2
5 Manchester Square					
London					
W1U 3PD					— Micro
Date 08/06/2023 10:03	Des	igned by	v KIvano	v	
File SUDS Turbine.SRCX	Che	cked by			Draina
Innovyze		rce Cont	rol 202	0.1	
- 1 -					
Summary of Results	s for 2	00 vear	Return	Period (+35	58)
4		4		, ,	
Storm	Max 1	Max Max	k Max	Status	
Event	Level De	epth Conti		e	
	(m)	(m) (1/s	s) (m ³)		
60 min Winter	0.669 0	.669 1	L.4 93.	5 ок	
120 min Winter			L.4 115.		
180 min Winter	0.849 0	.849 1	L.4 129.	0 O K	
240 min Winter			L.4 138.		
360 min Winter 480 min Winter				8 Flood Risk 8 Flood Risk	
600 min Winter				2 Flood Risk	
720 min Winter				8 Flood Risk	
960 min Winter	1.013 1			8 Flood Risk	
1440 min Winter				3 Flood Risk	
2160 min Winter 2880 min Winter				4 Flood Risk 0 Flood Risk	
4320 min Winter			L.S 152. L.4 135.		
5760 min Winter			L.4 117.		
7200 min Winter	0.706 0	.706 1	L.4 100.	4 ОК	
8640 min Winter			L.4 83.		
10080 min Winter	0.482 0	.482	L.4 61.	6 ОК	
Storm	Pain	Floodod	Diccharg	o Timo-Dook	
Storm Event	Rain (mm/hr)	Volume	Volume	e Time-Peak (mins)	
			-		
Event 60 min Winter	(mm/hr)	Volume (m³) 6 0.0	Volume (m ³) 97.	(mins) 2 62	
Event 60 min Winter 120 min Winter	(mm/hr) 48.320 30.750	Volume (m³) 6 0.0 0 0.0	Volume (m ³) 97. 123.	(mins) 2 62 7 122	
Event 60 min Winter 120 min Winter 180 min Winter	(mm/hr) 48.320 30.750 23.380	Volume (m³) 6 0.0 0 0.0 0 0.0	Volume (m ³) 97. 123. 141.	(mins) 2 62 7 122 0 180	
Event 60 min Winter 120 min Winter	(mm/hr) 48.320 30.750 23.380 19.202	Volume (m³) 6 0.0 0 0.0 0 0.0 2 0.0	Volume (m ³) 97. 123.	(mins) 2 62 7 122 0 180 4 238	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865	Volume (m³) 6 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0	Volume (m ³) 97. 123. 141. 154.	(mins) 2 62 7 122 0 180 4 238 8 354	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.869 10.14	Volume (m³) 6 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920	Volume (m³) 6 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.285	Volume (m³) 6 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 9 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213. 222.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.285 5.470	Volume (m³) 6 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 9 0.0 6 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906 7 1142	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.289 5.470 4.112	Volume (m³) 5 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 9 0.0 6 0.0 9 0.0 10 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213. 222. 218.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906 7 1142 2 1620	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 4320 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.289 5.470 4.112 3.352 2.50	Volume (m³) 5 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 9 0.0 6 0.0 7 0.0 6 0.0 7 0.0 7 0.0 7 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213. 222. 218. 298. 323. 362.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906 7 1142 2 1620 9 2076 9 2980	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.289 5.470 4.112 3.355 2.500 2.038	Volume (m³) 5 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 8 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213. 222. 218. 298. 323. 362. 394.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906 7 1142 2 1620 9 2076 9 2980 4 3856	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.289 5.470 4.112 3.355 2.500 2.038 1.735	Volume (m³) 5 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 8 0.0 5 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213. 222. 218. 298. 323. 362. 394. 419.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906 7 1142 2 1620 9 2076 9 2980 4 3856 7 4688	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.289 5.470 4.112 3.355 2.507 2.038 1.735 1.525	Volume (m³) 5 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213. 222. 218. 298. 323. 362. 394.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906 7 1142 2 1620 9 2076 9 2980 4 3856 7 4688 6 5536	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.289 5.470 4.112 3.355 2.507 2.038 1.735 1.525	Volume (m³) 5 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213. 222. 218. 298. 323. 362. 394. 419. 441.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906 7 1142 2 1620 9 2076 9 2980 4 3856 7 4688 6 5536	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.289 5.470 4.112 3.355 2.507 2.038 1.735 1.525	Volume (m³) 5 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213. 222. 218. 298. 323. 362. 394. 419. 441.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906 7 1142 2 1620 9 2076 9 2980 4 3856 7 4688 6 5536	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.289 5.470 4.112 3.355 2.507 2.038 1.735 1.525	Volume (m³) 5 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213. 222. 218. 298. 323. 362. 394. 419. 441.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906 7 1142 2 1620 9 2076 9 2980 4 3856 7 4688 6 5536	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.289 5.470 4.112 3.355 2.507 2.038 1.735 1.525	Volume (m³) 5 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213. 222. 218. 298. 323. 362. 394. 419. 441.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906 7 1142 2 1620 9 2076 9 2980 4 3856 7 4688 6 5536	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.289 5.470 4.112 3.355 2.507 2.038 1.735 1.525	Volume (m³) 5 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213. 222. 218. 298. 323. 362. 394. 419. 441.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906 7 1142 2 1620 9 2076 9 2980 4 3856 7 4688 6 5536	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.289 5.470 4.112 3.355 2.507 2.038 1.735 1.525	Volume (m³) 5 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213. 222. 218. 298. 323. 362. 394. 419. 441.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906 7 1142 2 1620 9 2076 9 2980 4 3856 7 4688 6 5536	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 48.320 30.750 23.380 19.202 14.502 11.865 10.14 8.920 7.289 5.470 4.112 3.355 2.507 2.038 1.735 1.525	Volume (m³) 5 0.0 0 0.0 0 0.0 2 0.0 2 0.0 5 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0	Volume (m ³) 97. 123. 141. 154. 174. 190. 203. 213. 222. 218. 298. 323. 362. 394. 419. 441.	(mins) 2 62 7 122 0 180 4 238 8 354 5 468 3 582 8 692 5 906 7 1142 2 1620 9 2076 9 2980 4 3856 7 4688 6 5536	

Pell Frischmann			Page 3
5 Manchester Square			
London			
W1U 3PD			Micro
Date 08/06/2023 10:03	Designed by KI	vanov	– Micro Drainage
File SUDS Turbine.SRCX	Checked by		Brainage
Innovyze	Source Control	2020.1	
	Rainfall Details		
Rainfall Model Return Period (years) Region M5-60 (mm) Ratio R Summer Storms		Winter Storms Cv (Summer) Cv (Winter) ortest Storm (mins) ongest Storm (mins) Climate Change %	0.750 0.840 15 10080
	<u>Time Area Diagram</u>		
	Total Area (ha) 0.240		
	Time (mins) Area From: To: (ha)		
	0 4 0.240		
	0 4 0.240		

©1982-2020 Innovyze

Pell Frischmann	l						Page 4
5 Manchester So	quare						
London							
W1U 3PD							Micro
Date 08/06/2023			Designe	d by KIv	anov		Drainage
File SUDS Turbi	lne.SRC	X	Checked	-			brainage
Innovyze			Source	Control	2020.1		
			Model De	taile			
			MOUEL DE	Laiis			
		Storage is (Online Cove	er Level (m) 1.200		
		Tank	or Pond	Structur	<u>re</u>		
		Inv	ert Level	(m) 0.000			
Depth (m) Ar	ea (m²)	Depth (m) An	rea (m²) De	epth (m) A	area (m²) D	epth (m) A	rea (m²)
0.000	100.0	0.500	160.2	1.000	234.6	1.200	268.3
	H	ydro-Brake	® Optimun	n Outflow	/ Control		
		Uni	t Referenc	e MD-SHE-(0058-1500-1	000-1500	
			gn Head (m			1.000	
		Design	Flow (l/s Flush-Flo		Са	1.5 lculated	
					se upstream		
			Applicatio p Availabl			Surface Yes	
			ameter (mm			1es 58	
			t Level (m			0.000	
		itlet Pipe Di ed Manhole Di				75 1200	
		Control P	oints	Head (m)	Flow (l/s)		
	De	sign Point (0	Calculated)	1.000	1.5	5	
			Flush-Flo ^T				
	Мо	an Flow over	Kick-Flo®				
	Me	an Flow over	neau Kaliye	-	1.2	2	
The hydrologica Hydro-Brake® Op Hydro-Brake Opt invalidated	timum as	s specified.	Should an	other type	e of contro	l device of	ther than a
Depth (m) Flow	(l/s)	Depth (m) Flo	ow (l/s) De	epth (m) F	low (1/s)	Depth (m)	Flow (l/s)
0.100	1.2	1.200	1.6	3.000	2.5	7.000	3.7
0.200	1.4	1.400 1.600	1.7	3.500 4.000	2.7	7.500 8.000	3.8 3.9
0.400	1.4	1.800	2.0	4.000	2.8	8.500	4.0
0.500	1.2	2.000	2.0	5.000	3.1	9.000	4.1
0.600 0.800	1.2	2.200 2.400	2.1	5.500 6.000	3.3 3.4	9.500	4.2
1.000	1.4	2.400	2.2	6.500	3.5		
	ï		I		I		
		©19	82-2020	Innovyze			
I				-			